返回列表 发布新帖

基于改进人工蜂群的核模糊聚类算法

9 0
admin 发表于 2024-12-10 15:02 | 查看全部 阅读模式

文档名:基于改进人工蜂群的核模糊聚类算法
针对核模糊C均值(KFCM)算法对初始聚类中心敏感、易陷入局部最优的问题,利用人工蜂群(ABC)算法的构架简单、全局收敛速度快的优势,提出了一种改进的人工蜂群算法(IABC)与KFCM迭代相结合的聚类算法.首先,以IABC求得最优解作为KFCM算法的初始聚类中心,IABC在迭代过程中将与当前维度最优解的差值的变化率作为权值,对雇佣蜂的搜索行为进行改进,平衡人工蜂群算法的全局搜索与局部开采能力;其次,以类内距离和类间距离为基础,构造出适应KFCM算法的适应度函数,利用KFCM算法优化聚类中心;最后,IABC和KFCM算法交替执行,实现最佳聚类效果.采用3组Benchmark测试函数6组UCI标准数据集进行仿真实验,实验结果表明,与基于改进人工蜂群的广义模糊聚类(IABC-KGFCM)相比,IABC-KFCM对数据集的聚类有效性指标提高1到4个百分点,具有鲁棒性强和聚类精度高的优势.
作者:梁冰徐华
作者单位:江南大学物联网工程学院,江苏无锡214122
母体文献:第十七届中国Rough集与软计算学术会议、第十一届中国Web智能学术研讨会、第十一届中国粒计算研讨会及第五届三支决策学术会议联合会议(CRSSC-CWI-CGrC-3WD2017)论文集
会议名称:第十七届中国Rough集与软计算学术会议、第十一届中国Web智能学术研讨会、第十一届中国粒计算研讨会及第五届三支决策学术会议联合会议(CRSSC-CWI-CGrC-3WD2017)  
会议时间:2017年5月26日
会议地点:合肥
主办单位:中国计算机学会,中国人工智能学会
语种:chi
分类号:
关键词:核模糊聚类算法  搜索策略  函数优化  适应度函数
在线出版日期:2018年7月24日
基金项目:
相似文献
相关博文
2024-12-10 15:02 上传
文件大小:
870.4 KB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表