文档名:基于二次搜索的改进粒子群算法
针对标准粒子群优化(pSO)算法在求解复杂优化问题中出现的早熟收敛问题,提出一种结合梯度下降法的二次搜索粒子群算法.首先,当全局极值超过预设的最大不变迭代次数时,判断全局极值点处于极值陷阱中;然后,采用梯度下降法进行二次搜索,并以最优极值点为中心、某一具体半径设定禁忌区域,防止粒子重复搜索该区域;最后,依据种群多样性准则生成新粒子,替代被淘汰的粒子.将二次搜索粒子群算法及其他四种典型的改进粒子群算法分别应用于四种典型测试函数的优化,仿真结果表明,二次搜索粒子群算法收敛精度最高提升了10个数量级,并且收敛速度较快更容易寻找全局最优解.
作者:赵延龙滑楠于振华
作者单位:空军工程大学信息与导航学院,西安710077
母体文献:第十七届中国Rough集与软计算学术会议、第十一届中国Web智能学术研讨会、第十一届中国粒计算研讨会及第五届三支决策学术会议联合会议(CRSSC-CWI-CGrC-3WD2017)论文集
会议名称:第十七届中国Rough集与软计算学术会议、第十一届中国Web智能学术研讨会、第十一届中国粒计算研讨会及第五届三支决策学术会议联合会议(CRSSC-CWI-CGrC-3WD2017)
会议时间:2017年5月26日
会议地点:合肥
主办单位:中国计算机学会,中国人工智能学会
语种:chi
分类号:
关键词:改进粒子群算法 收敛精度 极值陷阱 禁忌区域 二次搜索
在线出版日期:2018年7月24日
基金项目:
相似文献
相关博文
- 文件大小:
- 1.35 MB
- 下载次数:
- 60
-
高速下载
|
|