返回列表 发布新帖

基于多源生物信号的下肢步态相识别

12 0
admin 发表于 2024-12-10 14:52 | 查看全部 阅读模式

文档名:基于多源生物信号的下肢步态相识别
为进一步提高人体下肢步态相识别的准确性,本文研究了融合表面肌电信号(sEMG)、膝关节角度和足底压力信号的人体下肢步态相识别方法.首先,将sEMG信号进行小波包分解提取多尺度能量和多尺度模糊熵特征;然后,对提取的sEMG信号特征值采用主成分分析(PCA)方法进行降维处理,并与足底压力特征值和膝关节能量特征值构成一组特征向量.最后,将特征向量输入粒子群优化最小二乘支持向量机(PSO-LSSVM)模型分类器对人体下肢运动信息进行步态相识别.实验结果表明,所提方法相较于其他方法有较高的识别准确率和有效性.
作者:张启忠席旭刚黄灵素罗志增
作者单位:杭州电子科技大学智能控制与机器人研究所,杭州310018
母体文献:第十二届中国智能机器人大会论文集
会议名称:第十二届中国智能机器人大会  
会议时间:2017年10月1日
会议地点:哈尔滨
主办单位:中国人工智能学会
语种:chi
分类号:
关键词:下肢步态相识别  多源生物信号  小波包分解  特征向量  最小二乘支持向量机  粒子群优化
在线出版日期:2020年10月26日
基金项目:
相似文献
相关博文
2024-12-10 14:52 上传
文件大小:
2.21 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表